&
A C 21 LYoo

== Axiomatix

4

4

).l

\‘\

\'\

Voo

N Amon e

Y _ L _ o L
- \
/(NASA-CR-115402) A PARAMETRIC STUDY OF THE N72-18194

COMPLEXITY OF SEQUENTIAL DECODERS, VOLUME %
Final Report G.K. Huth (Axiomatix, Marina
del Rey, Calif.) 27 Jan. 1972 93 p

7SCL Q3B , G3/08 18736

i : A
~—_

arina del Rey e Californig:

r
\../ ~
S

A PARAMETRIC STUDY OF THE
COMPLEXITY OF SEQUENTIAL DECODERS

FINAL REPORT
VOLUME II

Contract No.: NAS 9-12091

Prepared by
Gaylord K. Huth

Axiomatix
13900 Panay Way, Suite 110M
Marina del Rey, California 90291

Prepared for

National Aeronautics and Space Administration
Manned Spacecraft Center
Houston, Texas 77058

Axiomatix Report No. R7201-1
27 January 1972

TABLE OF CONTENTS

Page
VOLUME I
LIST OF FIGURES « « « v« v vvove o v v e e e Ly
LIST OF TABLES . . & « vt e vt e ettt e e L vii
SECTION 1.0 INTRODUCTION . « « o v o e v e e e e .. 1
SECTION 2.0 CONVOLUTIONAL CODE STRUCTURE . . ., . 3

SECTION 3.0 VITERBI MAXIMUM LIKELIHOOD DECODER 16

3.1 Description of Decoding Algorithm 21
3.2 Performance of a Transparent Code Versus
a Nontransparent Code « . . . 36
3.3 Complexity of the Viterbi Decoder 39
3.3.1 Branch Metric ComputationA 40
3.3.2 Arithmetic Unit Complexity 44
3.3.3 Path Memory Storage e e e e 50
3.4 Performance Versus Complexity 52
VOLUME I1

SECTION 4,0 SEQUENTIAL DECODING 59

4.1 Sequential Deéoding as a Tree Searching

Algorithm o000 e . 59

4.2 Pe.rforrﬁance Parameters 69
4.2.1 Probability of Undetected Error 73
4,2.2 Cdmputations Distribution 74

4,2.3 Backsearch Distribution 82

ii

Page‘

4.2.4 Degradation Due to Metric Table Size . . 89
4.3 Decoding Resynchronization e 91
4.4 Complexity of the Sequential Decoder 104
4.4.1 Buffer Complexity . . . « « o o v v .. 110
4.4.2 Decoding Resynchronization Complexity 111
4.5 Performance Versus Complexity 120

SECTION 5.0 VITERBI AND SEQUENTIAL DECODER

PERFORMANCE VERSUS COMPLEXITY 123
SECTION 6.0 AREAS FOR FURTHER STUDY 128
REFERENCES &+ & o v v v e e e e e e e e i 131

APPENDIX I TRANSFER FUNCTIONS OF CONVOLU-
TIONAL CODES ¢ v v .. I-1

APPENDIX II TECHNIQUES OF BRANCH AND REFER-
ENCE PHASE SYNCHRONIZATION ., II-1

iii

LIST OF FIGURES

Figure -i Page
VOLUME 1
2.1 Example Convolutional Encoder and State Diagram . . . 4
2.2 Tree Diagram of Convolutional Encoder of Figure 2.1 . 7
2.3 Trellis Diagram for a K=3 Binary Convolutional Code
Whose Path Length is ' Branches 9
2.4 Rate 1/n Convolutional Code Encoder and. State
Diagram . . & ¢ o v v v 6 o v 6 o 0 0 s e e e e e e 13
2.5 Example Encoder and State Diagram e e . 15
3.1 An Example of State Transitions of a Convolutional
Code v v v v v v v v i v v voe e e e e e e 22
3.2 Flow Chart ‘Of Viterbi Decoder Algorithm 26
3.3 State Transition Table for Examﬁle 28
3.4 Present and Future Conditions at Startup 28
3.5 Trellis Diagram After One Received Branch 30

3.6 Present and Future Conditions after M=16 Input Bits . . 31

3.7 Trellis Diagram After Two Received Branches 32
3.8 Present and Future Conditions after Three Input Bits . 34
3.9 Trellis Diagram After 16 Received Branches 35

3.10 Modified State Diagram for the Example Convolutional
Code . v v v v v v it e e e e e e e e e e e e e e e e 38

3.11 Comparison of Complexity Versus Performance at
Output Probability of Error Per Bit of 10°4 58

iv

Figure ' _ ’ Pagé

VOLUME II
4.1 Logical Flow Chart of the Sequential Decoding

Algorithm e e e e e e e e e . . 63
4.2 Functional Block Diagram of a Practical Sequential

Decoder ¢ v v v v v v v v it e e e e e e » 70

4.3 Computations Distribution for Rate One-Half Hard
Decision Sequential Decoder with K=32 78

4.4 Computations Distribution for Rate One-Half Three-
Bit Quantization Sequential Decoder with K=44 . , . . 79

4.5 Computations Distribution for Rate One-Third Hard
Decision Sequential Decoder with K=23 ., 80

4.6 Computations Distribution for Rate One-Third Three-
Bit Quantization Sequentiak Decoder with K=23 81

4.7 Backsearch Distribution for Rate One-Half Hard
Decision Sequential Decoder with K=32 85

4,8 Backsearch Distribution for Rate One-Half Three-
Bit Quantization Sequential Decoder with K=44 . ., . . 86

4.9 Backsearch Distribution for Rate 1/3 Hard Decision
Sequential Decoder with K=23 87

4.10 Backsearch Distribution for Rate 1/3 Three-Bit
Quantization Sequential Decoder with K=23, . . 88

4.11 Density of Errors in Initial HypotheS1s for a G1ven
Resynchromzatmn e e e e e e e 97

4.12 Detailed Sequential Decoder Algorithm Logic Flow
Diagram v e s e . e e s e s e e e e e 105

4.13 Sequential Decoder Performance Using Block Resyn-
chronization with Code Rate R and Q Bits of
Quantization ¢« v ¢ v v i v e e e e e e e e e e 113

Figure

4,14

I-1

Comparison of the Performance of Sequential
Decoding Using Block Resynchronization and
Statistical Resynchronization o

Comparison of Complexity Versus Performance
of Viterbi Decoding and Sequential Decoding with
Code Rate 1/2 and Output Probability of Error
per Bitof 104

Comparison of Complexity Versus Performance
of Viterbi Decoding and Sequential Decoding with
Code Rate 1/3 and Output Probability of Error
perBitof10'4.... e e e e e

Quadriphase Demodulation

vi

Page

115

124

 LIST OF TABLES

Table ' , : Page
VOLUME I

2.1 Modulo-2 Addition « 4 4t e e e e b e e e . 5
3.1 State Metrics for States VO and VI . + o o v v o o o .. 45

3.2 Complexity of Viterbi Maximum Likelihood Decoder

for Code Rate 1/2 v v v v v v v v v v v v 54
3.3 Complexity of Viterbi Maximum Likelihood Decoder

for Code Rate 1/3 e e e e e . e e e . 55
VOLUME II
4.1 Probability of Quantization Assignment . F. B X ¢
4.2 Example of the Sequenfcial Decoding Aigorithm 65
4.3 Sequential Decoder Undeteéted Error Probability 74
4.4 Measured Computations Distribution Parameters 76
4.5 Measured Backsearch Distribution Parameters 83
4.6 Performance Versus Branch Metr.i>c Quantization . .. 90
4.7 Measured Probability of Resynchronization 96

4.8 Buffer Complexity Versus Branch Metric Quantization . 112

4.9 Performance of Sequential Decoding Using Block
Resynchronization at P, = 104 v ... 114

4.10 Performance of Sequential Decoding Using Statistical
Resynchronization at P, = 10°% L, 117

4.11 Overall Complexity of Sequential Decoding for Various

Data Rates at Output Probability of Error per Bit
of 1074 L L e . 121

vii

SECTION 4.0

SEQUENTIAL DECODING

4.1 SEQUENTIAL DECODING AS A TREE SEARCHING ALGORITHM
The sequential decoder accep.ts the sequence of symbols from
the channel denoted By T = {ri’ j} where the index i refers to the received
branch and the index j refers to one of the n symbols on the branch for
a code rate R = 1/n., From the received séquence, the sequential
decoder attempts to find a path X = {xi, j} through the tree diagram
which has a high likelihood of producing the sequence r. It does so by
selecting a tentative path in the tree diagram starting at the all-zeroes
state and at each successive node following, the branch (transition) that
best matches the appropriate segment of r. Whenever the path that the
decoder is currently following becomes too unlikely, a search is initiated
for a better one. To determine the likelihood of a given path in the tree
diagram, a metric is established as a measure of how different a par-
ticular pathl is from the received sequence. As an example of how the
metric measures the likelihood, consider ideal coherent binary phase-
shift-keyed (PSK) modulation over a Gaussian noise channel and eight-
level quantization on the demodulated symbols. The signal strength
- and noise density is normalized such that the noise density has unit
variance and the received signal amplitude is iVES/_NO-, where Es/No
is the si-‘gnal energy-to-noise one-sided spectral density ratio of each

symbol. In this case, the nearly optimum choice (no noticeable

59

60

degradation in performance) of the quantizing thresholds is 0, +0.5,

+1.0, and +1.5. Now assign the quantization bits to the eight levels

as follows:

111

110 | 101 | 100 | o000 | oo1 | o010 | o011
0 -0.5 0 0.5 1.0 1.

-ll. 5 1.5

Using this notation, the first quantization bit represents the sign, 0
for + and 1 for - (this is also the convention for encoding PSK with
binary symbols), the next two quantization bits represent the magni-

tude.

ment of a given quantization to a received symbol is presented in

For a value of E_/N_ equal to 0 dB, the probability of the assign-

Table 4.1.
Table 4.1 Probability of Quantization Assignment
Quantization
Symbol
Transmitted 111 110 101 100 000 001 010 011
0 0.00179(0.00613{0.02 |0.051}0.102]0.159]0.195 0. 465
1 0.465 0.195 0.159]0.102§0.051]10.02 | 0.00613}| 0.00179

To compute the n symbol metrics that form the branch metric

along a path, each symbol on the branch corresponding to a transmitted

zero is "exclusive-OR''-ed (modulo-2 addition) to the sign bit of the

received Syrhbol quantization. The metric interval is defined as the

result of "exclusive-OR'" -ing the symbol on the zero branch with the
‘sign bit of the received symbol quantization. If I, is the probability

of a given quantization assignment for a transmitted zero and I1 is the

61

probability for a transmitted one, then the symbol metric along the

zero branch is given by:

I
: 1
WsO = C[l -U - logz»(l—())Jv | (4.1)

where c is a scale factor and U is the bias (to bg optimized but simu-
lations indicate the best choice is equal to the code rate). Since the

best codes have generatérs that tap the ihput sequence to the convolu-
tional encoder, then the code symbols on the one branch are complements
of the symbdls on the zero branch apd the symbol metric albng the one

branch is given by:

/1 ,
Wep = cl:l -U -log2<'i—q>] ’ . (4.2)
. 1

If a symbol on the zero path is 1 and the received symbol quantization
is 110, the resulting metric interval _i's 010. From Table 4.1, it is
seen that IO = 0,195 and I1 = 0,00613 for the metric interval 010,
Hence, the sﬁnbol metric along the.zero branch is Wgg = ¢(5.87-U)
and along the one branch is Wsl = -c(7.34+U).

The branch metric is the sum of the n symbol metrics for code
rate 1/n along the branch. The path metric is the sum of the branch
metrics over the branches in the path. The bias U is chosen so that |
the path metric of a long transmitted path (code word) increases with
the length of the path while any other long path has‘a. path metric that

decreases with the length of the path. The scale factor c is usually

62

chosen lor implementation convenience.

The péth metric for a given path u in the tree diagram of length
h branches is denoted W(u, h). _In terms of W(u,h), the sequential
decoder attempts to hypothesize u through the tree diagram for which
W(u, h) incre;,ses with h. If W(u,h) starlts to decrease with increasing
h, then the decoder searches back to find a path u' for which W(u',h)
increases. To establish whether a path has an increasing or decreasing
metric with h and to eliminate the need to store large values of W(u,h),
thresholds are established with spacing A. Aftér each move forward,
tA is subtracted from W(u,h) such that tA < W(u,h) < (t+1)A, where
t is an integer. Hence, under normal conditions after a move forward
and the metric adjustment, 0 S_W(E'h) <A. If.the decoder reaches
some node in the path such that each branch forward from the node will
make W(u,h) negative, then the decoder cannot continue forward at this
value of the threshéld. " Referring to the ‘flow chart in Figure 4.1, it
is seen that, if W(u,h) is negative along the most probable branch,
then the sequential decoder tests the path metric W(u,h-1) correspond-
ing to the branch previously followed forward, The branch just behind
the branch for which W(u,h) was first negative must be positive since
tA was subtracted to make 0 < W(u,h-1) < A, However, as the decoder
backs up, branches farther back may be negative. For example, if
W(u,h-2) <W(u,h-1) >A and at least A was subtracted from W(u,h-1),

then W(u,h-2) < 0. If the path metric is positive, then paths are

START AT
ALL ZEROS
STATE

T

) W(y, h‘l)

ADD A TO <

63

CHOOSE
MOST
PROBABLE
BRANCH

MOVE

SUBTRACT
Ta
FROM

wy, h)

1

MOVE
BACKWARD

'

‘CHOOSE
NEXT
MOST
PROBABLE

BRANCH

NONE

Figure 4,1 Logical Flow Chart of the Sequential Decoding Algorithm

64

examined leading from the other branch in the binary case (the next
most probable branch in any case) if it has not already been examined.
If both branches have been examined, then the decoder must back up
another branch. If the path metric is negative, then A is added to it
and the testin.g continues. If the path metric has been increased by

A and a branch is re-examined, then the metric must not be allowed
to have tA subtracted from it or thg sequential decoder could enter

a loop.

To more easily understand the operation of the sequential decoder,
an example is presented for the rate R = 1/2 convolutional code of
Figures 2.1 and 2.2. Also, to simplify the example, hard decisions
on the demodulated symbols are assumed. For ideal coherent PSK
modulation over a Gaussian channel with Es/No = 1.8 dB, the proba-
bility of error is 0. 045. Therefore, I0 = 0.955 and I1 = 0. 045 with the
symbol metric w = ¢(0.933-U) for a match between the received symbol
and the symbol on the path, while the symbol fnetric w' = -c(3.47+0)
is for a mismatch. A choice commonly used for c and U is ¢ = 1.36
and U = 0.567 for a rate 1/2 code. In this case, the branch metric is
1 for a double agreement between received symbols and the symbols
on the branch; -5 for a single agreement, and -11 for a double dis-
agreement. By simulations, it is found that, using these branch

metrics, the best performance is obtained for threshold spacing

A =09,

65

‘Following the logical flow diagram in Figure 4.1 and the tree
diagram in Figure 2.2, the tree searching of the sequential decoder
to find the most likely transmitted path for a received sequence of
0101000000 is shown in Table 4.2. The variable 0 has not been dis-
cussed but its purpose will become clear during the discussion of

Table 4.2. In decoding step 1’, the received branch (the first two

Table 4.2 Example of the Sequential Decoding Algorithm

Decoding Decoded

Step Node Branch |Sequence | W(u,h) { W(u,h-1) 0
1 a 00 - -5 0 0

2 a 00 - 4 9 1

3 aa 00 0 -1 4 0

4 a 11 - 4 9 1

5 ab 00 1 -1 4 0

6 a 00 - 13 18 1

7 aa 00 0 8 13 1

8 aaa 00 00 0 8 0

9 aaaa 00 000 1 0 0

10 aaaaa 00 0000 2 1 0
11 aaaaaa 00000 2 0

symbols) is 01, However, this is only a single agreement no matter
which branch emanating from the base node or origin node is examined
by the decoder.'. Hence, there is a tie path. In this case, either branch
may be examined first but, by convention, the branch is followed for
which the first of the two received symbols matches the first symbol

on the branch. Therefore; the branch with symbols 00 is attempted,

but since the branch metric is -5 for a single agreement, and is to be

66

added‘to the path metric of 0 at thg origin, the decoder cannot move
forward without making the path metric negative. Following the flow
chart for this conditioh, the decision block "Is W(u,h-1) '2_ 0" is encoun-
tered. Normally, since the path metric W(u,h-1) = 0, the decoder
would back up, but at £he origin, the decoder cannot back up, so the
alternate decision must be made. to increase W(u,h-1) by A, making
it equal to 9. Now, the decoder c.an move forward along the 00 bfanch,
resulting in a path metric equal to 4. When the second branch in the
path is attempted, there is another tie branch. Attempting to follow
the 00 path results in a path rﬁetric of -1. This time, W(u,h-1) = 9.
Therefore, the decoder moves backward and selects the other branch
emanating from the origin, the 11 branch. Following the 11 branch
from the origin, the path metric becomes 4 since there is a single
agreement on the branch., To represent the nodes along the path, a
sequence of labels on the tree diagram is used beginning with the origin
node labeled a. Thus, from node ab, the decoder attempts the 00 branch.
However, this branch also results in a path metric of -1. Therefore,
the decoder backs up to the origin node a and, since there are no other
untried branches emanating from the origin, A is added to the path
~metric W(u, h-1) making it equal to 18. Now, when the 00 branch
emanating from the origin is attempted, the path metric becomes 13
and, when the 00 branch emanating from the node aa is attempted,- the

path metric becomes 8. Beyond the node aa, the received sequence

67

completely agrees with the uppermost path in the tree diagram.
Therefore, the remaining branch metrics are each equal to 1,
corresponding to a double agreement branch.

In decoding step 8, the path metric is increased from 8 to 9, but
since this is the first time on this branch, tA is subtracted from the
path metric with t = 1 making the path metric 0. In decoding step 6,
the path metric was large enough to have A subtracted from it, but
since this was not the first time on this branch, it was not allowed.

If A had been subtracted from the path metric in decoding step 6, then
the decoder would follow the same decoding steps as for steps 3-5, and
the decoder would be in a loop. If the decision block "FIRST TIME ON
BRANCH'" was implemented in a brute force method, a very large
memory would be necessary. Ho§vever, it has been proven by Fano®
that a single binary variable can perform this function. In this case,

a variable 0 is set equal to 1 each time the decoder backs up. The
variable @ is set equal to 0 in the forward path search of the decoder
when the path metric is 0 < W(u,h)< A. When the variable 0 is equal

to 1, then the decoder is not allowed to subtract tA from the path metric.
In Table 4.2, it is seen that, in the back search of the decoder in steps

1 and 3, the variable 0 is set to 1 but then is immediately set to 0 when
the decoder attempts a forward move in steps 2 and 4, since the path
metric is less than A. In step 5, the decoder begins a back search,

and the variable 0 is set equal to 1 for step 6. However, in decoding

68

step 6, when the deco-der moves forward, the path metric is greater
than A. Hence, 0 is not set to zero agd fA cannot be subtracted
from the path metric. By decoding step 7, the path metric is now
less than A, and 0is set equal to zero‘ for step 8. The decoder
only back searches when the most probable path segment results in

a negative path metric, and as the decoder begins to search forward
after the path metric has been increased by A, the same most prob-
able path segment mus;c be re-examined. However, when the branch
is reached that initiated the back search, the path memory will be
between 0 and A; Hence, 0 is reset equal to zero only when a branch
is examined for the first time.

In Table 4.2, the decoded sequence is shown corresponding tp
the path through the tree diagram. As is seen by the example, in
order to decode a message, the sequential decoder mair have to back _
up and change the partially decoded sequence. Therefore, the decoded
bits cannot be immediately released to the data user. The number of
decoded bits that must be retained in order for the decoder to change
the partially decoded segment represents a delay of information to t;he
data user. Thus, an important part of this study is to provide tech-
niques to minimize this number of retained decoded bits.

In Section 2 0, it was pointed out that paths in the tree diagram
include remergers. If the sequential decoder follows a path other than

the transmitted path which remerges with the transAmitted path, then

69

the sequential decoder will make undetected errors corresponding

to the erroneous decoded bits'along.the unremerged portion of the
path. Ho wever, it has been shown by theoretical bounds and by
simulations that the probébility of undetected error decreases expon-

K/Z. | There-

entially with the memory length K, approximately as 2~
fore, the probability of undetected error can be made arbitrarily
small since the sequential decoder doeé not require a finite memory
length code. Howevér, as will be seen in the next section, the prob-
ability of error per bit of a sAequential‘decoder is severely d.ependent
on the computational capability (number of branches that may be
searched for each received branch) of the decoder. While the prob-
ability of error per bit is still completely limited by the complexity
of the decodér, uﬁder certain conditions, the sequential decoder can
achieve lower probability of error per bit for a given éomplexity than
any other decoding technique devised to date.
4.2 PERFORMANCE PARAMETERS

A functional block diagram of a practical sequential decoder is
presented in Figure 4.2. The sequential d.ecoder receives quantized
code symbols from the demodulator. The forward buffer is used to
store incoming data until the decoder can examine the data. Under
normal conditions, the forward buffer is relatively empt&. However,

during periods of a large number of errors from the demodulator (or

symbols with low reliability in the quantized case), the decoder must

70

QUANTIZED ' FORWARD
DEMODULATED BUFFER
DATA ‘

, CPU

14 BUFFER
CONVOLUTIONAL
ENCODER

I ALGORITHM METRIC
LOGIC | TABLE

BACKUP| _ DATA
BUFFER USER

I

Figure 4.2 Functional Block Diagram of a Practical Sequential Decoder

71

search many branches in order to find the most probable code word
that was transmitted. 'I‘hus, du.ring periods of high computational

demand on the decoder, the forward buffer stores the incoming data
until there is a period of a small number of errors from the dequula.tor.

The CPU buffer in Figure 4.2 allows the decoder algorithm log.ic
to read several branches at a time from the forward buffer. The
backup buffer is used to store the quantized symbols of b received
branches corresponding to b past hypothesized bits of the transmitted
path. Each time the decoder investigates a received branch, the
algorithm logic loads the convolutional encoder with the previous
hypotheses to compute the symbols on the particular branch in the
code tree, and the branch metric is obtained from the metric table.

If the decoder searches forward and extends the path in the tree by one
branch, a new received branch is obtained from the forward buff.er (or
from the CPU buffer). When the new hypothesis and received branch
are stored in the backup buffer, one hypothesized bit (the oldest in the
backup buffer) is released to the data user.

Computer simulations are necessary to measure the performance
of seqﬁential decoding with various design parameters since analytic
results are not exact enough for engineering design purposes when the
best performance is to be obtained. The computer simulation program
of the sequential decoder was written prior to this study by Axiomatix

to measure the computations distribution, the backsearch distribution,

72

and the probability of undetected errors. The program is oriented
to the ideal coherent PSK modulation with a white.Gaus sian noise
channel. However, very little modification is necessary to simulate
the performance of the sequenﬁal decoder in conjunction with other
types of modulation and channels. The program is very flexible in
terms of the design parametérs that may be specified for the sequential -
decoder. Either rate 1./2 or 1/.3 codes can be used up to a maximum
memory length of the encoder of 60 stages. The generated samples
of the channel can be quantized by Q = 1, 2, or 3 bits. The metric
table is generated by the computer prégram calculating the probability
of the quantization assignments as discussed in the previous section.
These probabilities of the quantization assignment also could be input
data when specifying the metric table. The bias U is also an input
parameter. Another input design parameter is how many bits are used
to represent each entry in the metric table. The scale factor c is com-
puted such that the most negative entry (which is also always the largest
~in magnitude) in fhe table uses all of the available bits for its represent-
ation. The remaining design parameter to be specified for the algorithm
is the threshold spacing A. The value of A is specified relative to the
unscaled metrics. However, the threshold spacing used by the decoder
in the simulation is cA or a scaled va;lue.

To establish the performance of the éequential decoder with various
design parameters, statistics are taken on the number of computations

(moves) for the decoder to find a path that it can extend one branch

73

farther into the code tree than was previously reached. KEach time
a path is extended one branch farther into the code tree, a decoded
bit is released to the data user. Thus, these statistics on the com-
putations lead to the computa:tioné distribution to decode a bit. This
computations distrintion to decode a bit is used in the design of a
practical sequential decoder to determine the size of the forward
buffer and the speed advantage of the logic unit.

Another design parameter for a practical sequential decoder is
the size of the backup buffer which determines the decoding delay.
To determine the required size of the backup buffer, the backsearch
distribution is measured. Each time a path is found by>the decoder
that may be extended one branch farther into the code tree, the maxi-
mum number of nodes is recorded for which the decoder was required
to back up tq find this new path or to add A to the metric so that the
present path could be extended. Thus, from the backsearch statistic
for each decoded bit, the probability of a given backsearch required
by the decoaer is determined.
4,2.1 Probability of Undetected Error

To obtain undetected error statistics of the sequential deéoder,
as each bit is decoded, the bit is compared with the known transmitted
bit to test for errors. The ﬁleasured probability of undetected error
for a signal energy per bit/noise density (E/N) of 4.8 dB, using

a systematic code of rate 1/2 with hard decisions on the received

74

binary symbols, is given in Table 4.3. The algorithm design para-
meters for this case are those for the optifnized rate 1/2 hard deci-
sion sequential decoder preéented in example, i.e., a branch metric
equal to 1 for a double agreement between the received symbolls and
the symbols on the branch, -5 for a single agreement, -11 for a double
disagreement, and threshoid spacing A = 9. Table 4.3 illustra;ces
that, for memory length larger than 32, the probability of undetected
error is negligible for a design of the forward buffer and backup buffer
size to obtain an output probability of error equal to 104 which is

used for the voice channels of manned spacecraft missions.

Table 4.3 Sequential Decoder Undetected Error Probability

Memory Length Probability of Undetected Error
9 4,0x 1073
20 2.8x 1074
32 2.0x 1075

4.2.2 Computation Distribution

The probability P(C >C,,), the compufations .distribution, is the
probability that the number of branches C (not necessarily distinct)
to be searche<.'1 for a newly received branch is greater than or equal
to some number of branches C . An alternate definition is the prob-
ability that the number of computations C to decode a bit is greater

than or equal to some number of computations C,,,. The computations

75

distribution has been upper bounded by Savz;tge6 for random codes and
by Huth' for fixed codes and has been lower bounded by Jacobs and
Berlekamp8 for random codes. These theoretical bounds and com-
puter simulations have indicated that, for C,, much greater than 1
(i.e., Cpy > 100), the computations distribution is Pareto in form or:

« (4.3)

P(C >C,) ~ ACCm_
where a and A are given in Table 4. 4 for various code rates and
values of Eb/No that have been measured by computer simulation.

The branch metrics for the rate 1/2 hard decision decoder have pre-
viously been optimized to only require 5 bits for their representation
(i.e., 1, -5, -11, as has been discussed). For this case, the threshold
spacing has been optimized, resulting in a scaled value of 9. In the
other cases, the threshold spacing is unscaled, as discussed previously.
The remaining simulation results presented in Table 4.4 have not been
optimized to use the minimum number of bits to represent the branch
metrics. However, this will be presented in Section 4.2.4. For com-
parison and to obtain simple measures of the complexity, a larger
number of bits is used to represent the branch metrics than may be
eventually needed, and the bias U is chosen to equal the rate R. Also,
to guarantee that the probabilty of undetected error is a negligible
contribution to the total probability of error, larger code memory
lengths are used than may be eventually needed. The computations

distribution, the backup distribution, and the complexity of the decoder

Table 4.4 Measured Computations Distribution Parameters

76

Branch Received
Code |[Memory Metric Symbol E /N, |Threshold
Rate | Length |Quantization |Quantization Spacing A, o
R K (bits) Q (bits) (dB) A
4.6 9% 0.212 }0.895
4.9 9% 0.304 (1.07
32 5 1
5.2 9 0.328 |1.187
5.5 9% 0.389 |1.41
1.5 0.480 [0.907
1/2
3.0 0.309 |0.879
2.5
4.5 0.291 .|0.868
44 12 3
6.0 0.302 |0.848
3.0 3.0 0.415 |1.167
3.5 3.0 0.775 |1.49
: 3.0 0.387 |0.723
3.5
4.5 0.394 |0.716
1 4.0 3.0 0.526 [0.954
4.5 3.0 0.580 [1.145
1/3 23 12 5.0 3.0 0.624 [1.36
3.0 0.540 |0.924
2.0
4.5 0.469 10.887
3
2.5 3.0 0.639 |1.138
3.0 3.0 0.696 |1.364

*The threshold spacing A for the optimized rate 1/2 hard decision is the scaled

value while all other threshold spacing values are unscaled.

77

are all very insensitive to the code memory length in the range 32
to 64. Therefore, it is not an uncommon design practice to use a
larger code memory length than may be needed.

While Table 4.4 presents the parameters of the computations
distribution that make complexity of the forward buffer a straightfor-
ward calculation, it is difficult to obtain an intuitive feeling for the
relationship between the choice of.algorithm parameters and their
resulting performance. Therefore, the measured cémputations dis -
tributions from the computer simulations are presented in Figures
4.3 through 4. 6. Figure 4.3 presents the computations distribution
for the optimized rate 1/2 hard decision decoder. As Eb/N0 is in-
creased, it may be observed that significant improvements in the
computations distribution are obtained. In Figure 4.4, the perform-
ance for the rate 1/2 code and three-bit quantization on the received
symbols is presented. At Ey, /N, = 2.5 dB, several values of threshold
spacing are presented. The best choice for the unscaled threshold
spacing A is about 3.0. The value of A = 4.5 is only slightly worse
so that, actually, a fairly wide choice for A is possible without signi-
ficant degradation. Again, a significant improvement in the computa-
tions distribution is obtained for larger values of Eb/No' Figure 4.5
presents the rate 1/3 hard decision decoder. The choice of A =3.0
still gives a slight improvement over A = 4.5, and increasing Eb/No

gives significant improvement. Finally, Figure 4.6 presents compu-

78

-2
10 - T v rrreri T T 1 11 11t
10-3 4
: -
—
Ep/Ny=4.6 dB
£
O
A
L
s}
10-4
p— Eb/No=5.5dB
10-5 It 1 11411 1 Lt N1 L1
102 103 Lo%
Cm

Figure 4.3 Computations Distribution for Rate one-half
Hard Decision Sequential Decoder with K=32

10 T T T 71717 T T T
10-3 .
]
—
- -
g
© Eb/No
N =2.5 dB
Q A=3
a A-=4.
10°41
N A -3]
B E/No=3 dB 7
10—5 { L] [L 1111 | 1 [1 1 1 11
102 103 104
cm

Figure 4.4 Computations Distribution for Rate one-half
Three Bit Quantization Sequential Decoder with K=44

80

-2 '
10 T T T 77T

E/N,=3.5 dB

10-3

A=3 |
E,/N,=4 dB

rrui

1111

L1 11

3 r -
O
I\ [-
Qo
~ Ep/N,=4.5 dB
10-4
10-5 [N N N N 1 L1 141
102 103
Cm

Figure 4,5 Computations Distribution for Rate one_third

Hard Decision Sequential Decoder with K=23

81

10-2 T T T 17 T1TrTIT] — 1 [T T U01]

10-3

&
O
Al
o
a
-4
10[A:3
o
- Ep/N_=3 dB
-5 1 | L 1 1 111l L1 1111
10 2 .
102 10 10
Cm

Figure 4.6 Computations Distribution for Rate one-third
Three Bit Quantization Sequential Decoder with K=23

82

tations distribution of the decoder with rate 1/3 and three-bit quanit-
zation on the received symbols. In this case, the threshold spacing
is more critical, and A = 3.0 gives muéh better performance than
A =4,5, Comparing the four f,i.gures, it is seen that approximately
2.0dB in Eb/'No is gained by using three-bit quantization instead of -
ha rd decisions on the received symbols, an& not quitev'O. 5dB in.Eb/No |
is gained by using a code rate of 1/3 instead of 1/2.
4.2.3 Backsearch Distribution

The probability P(bs.Z. Bm), the backsearch distribution, is the
probability that the number of branches by, for which the decoder must
- back up in its search to fina the best path containing a newly received
branch, is greater than or equal to some number of branches b,,. The
backsearch distributioﬁ has been upper bounded by Huth' for fixed codes.
This theoretical bound 'and computer simulations have indicated that, |
for b, greater than two memory lengths for rate 1/2 and one memory
length for rate 1/3, the backsearch distribution is of the form:

P(bg > by) = A, 27FPm | (4. 4)
where B and Ay are given in Table 4.5 for various code rates and values
of E, /N that have been measured by computer simulation.. In Secti.on
4,2.4, the number of bi£s to represent the branch metrics will be
- optimized in terms of the éomputations distribution and the backsearch
distribution to minimize any degradation that might occur when u;ing
fewer bits., However, for initial comparisons of the backsearch dis-

tribution, 12 bits were us ed to represent the branch metrics,

Table 4,5

Measured Backsearch Distribution Parameters

83

Branch Received
Code { Memory Metric Symbol Ep/Ng | Threshold | Ay B
Rate | Length {Quantization|Quantization Spacing >
R K (bits) . Q (bits) (dB) A x10°2|x 10"
4.6 9 1.28 6.53
4.9 9% 0.770 | 7.05
32 5 1
5.2 9 0.270 7.15
5.5 Qi 0.381 9.97
1/2 1.5 1.24 4,65
2.5 3.0 0.910 4.99
44 12 3 4.5 0.630 5.45
3.0 3.0 0.342 5.36
3.5 3.0 0.139 6.14
3.0 1.28 5.90
3.5
4.5 6.54 7.08
23 12 1 4.0 3.0 4.84 10.2
4.5 3.0 5.84 13.9
1/3 5.0 3.0 5.11 17.6
3.0 2.59 7.66
2.0
4.5 4.94 9.20
23 12 3
2.5 3.0 6.54 13.2
3.0 3.0 6.12 17.0

*The threshold spacing for the optimized hard decision rate 1/2 decoder is
the scaled value while all other values of threshold spacing are unscaled.

84

Table 4.5 presenfs the parameters of the backsearch distribution
that simplify the palculation of the backup buffer complexity. However,
it is difficult to make comparisons between the choice of algorithm
parameters using their resulting performance. Therefore, the mea-
sured backsearch distributions from the computer simulations are
presented in Figures ‘4. 7 through 4.10. Figure 4.7 presents the back-
search distribution for the optimized rate 1/2 hard decision decoder.
As E /N is increased, it may be observed that significant improve-
ments in the backsearch distribution are obtained. In Figure 4.8, the
performance for the rate 1/2 code with three-bit quantization on the
received symbols is presented. At E /N, = 2.5 dB, the performancé’
for several values of threshold spacing is presented. As the threshold
spacing is increased, the backsearch distribution is improved until
A =4,5, where there is no improvemenvt obtained by increasing the
threshold spacing to A = 6.0. However, the best choice for the thre-
shold spacing in terms of the»computations distribution was A = 3,0,
Therefore, there is a trade-off between the computations distribution
and the backsearch distribution in choosing the thréshold spacing.
Except when the speed advantage is extremely large, as it is for the
data rates of the voice channels, the value of»thres.ﬁold spacing is
used that gives the best corriputatioﬁé distribution, since the forward
buffer represénts the majority of the complexity and decoding delay.
Therefore, most of the computer simulations used A = 3,0 as the

value of threshold spacing.

10-2 |

T T T { | L -
Ep/N,=4.6 dB]
Ep/Ng=4.9 dB
1073 |- En/N.=5.2 dB]
» b/ No=2- : -
K Ep/Ng=5.5 dB _
E - pu—
0
Al
[00] = s
2
0,
1074 F _
_ -
10-5 1 N 1 |
10 30 50 70 90 110 130 150 170 190
b
m

Figure 4.7 Backsearch Distribution for Rate one-half
Hard Decision Sequential Decoder with K=32

85

-2
1077 T T T T T] T m
- -
R -
-3 —
10 p Eb/No—Z. 5dB -
P —
- A:4. 5 -
'DE fsen A:é —
Al
'g’ [-
A
-4 L _
10 t -
P ——
N _
— Eb/No¢3. 5 dB -
}_
r -
10-5 | |] 1

10 30 50 70 90 110 130 150 170 190

Figure 4,8 Backsearch Distribution for Rate one-half
Three Bit Quantization Sequential Decoder with K=44

87

10-2
10-3F
£
FQ —
Al
/]
2
5 n
10-4 1. _
C]
- P
| -
-
E,/N
10-5
10 90 110 130 150 170

Figure 4.9 Backsearch Distribution for Rate 1/3 Hard
Decision Sequential Decoder with K = 23

88

.10'2 n T T T
103 a
7 =2dB
L . o
Al
[))]
2 - -
¥
10-4 | -
" E,/N, = 2.5 dB —
joow —
10-5]]]
10 30 50 70 90 110 130 150 170 190
bm

Figure 4.10 Backsearch Distribution for Rate 1/3 Three Bit.
Quantization Sequential Decoder with K = 23

89

Comparing the backsearch distributions for rate 1/3 in Figures
4.9 and 4. 10 with the backsearch distributions for rate 1/2, it may
be observed that the slopes of the distribution for rate 1/3 are much
steeper than for rate 1/2. Thus, fewer branches must be stored for
backup with code rate 1/3. The size of the backup buffer does not
depend on the speed advantage of the decoder a.n‘d, hence, not on the
data rate. For each branch to be stored in the backup buffer, Q/R+1
storage bits are needed.

4,2.4 Degradation Due to Metric Table Size

To determine the computations distribution and backsearch dis-
tribution, the number of bits used to represent each branch metric
was Ny, = 12, except for the code rate 1/2, hard decision case, where
Ny, has been previously optimized to be equal to 5. In this section,
the performance versus Ny, is presented.

'I‘he entries in the metric table have Ny, bits to represent the best
branch metric, a bit to indicate whether the best branch is the zero
branch or the one branch, and Nb bits to -represent the difference
between the best metric and the other metric. Thus, ZNb+1 bits are
needed for each entry in the metric table. There are ZnQ possible
metric intervals where the n symbols on a branch are quantized to Q
bits. Therefore, the metric table has ZnQ words of ZNb+1 bits each.

Table 4.6 presents the results of simulations for various values

of Ny, in terms of the parameters A, and a of the computations

90

TABLE 4.6 Performance Versus Branch Metric Quantization
Computation Backsearch
Distribution Distribution
Received Branch Parameters Parameters
Code Symbol EL/N, Metric
Rate |Quantization Quantization | A a Ay B
R Q (bits) (dB) N}, (bits) x10-2 | x1072
12 0.41511.167 | 0.342 5.36
10 0.516(11.194 | 0.930 6.95
1/2 3 3.0 8 0.562]11.205 | 0.930 6.95
7 0.530]1.175 | 0.389 4,94
6 0.32610.915 1.0 3.69
12 0.580|1.145 | 5.84 13.9
10 0.670}(1.182 | 8.90 15.6
1 4,5
8 0.588}1.110{ 7.50 13.4
7 0.506 §10.973 | 1.60 6,26
1/3 .
12 0.639§1.138 | 6.54 13.2
10 0.549 11.107 { 7.50 13.4
3 2.5 .
8 0.564 }1.116 | 7.50 13.4
7 0.584 |1.097]| 5.00 }11.6

91

distribution and A, and g of the backsearch distribution. It may be
seen that, for R=1/2 andQ = 3, the performance greatly deteriorates
for N,y = 6, For R=1/3 and Q =1 or 3, the performance for Ny, : 6
is so poor that the decoder can no longer decode the data fast enough
to make a computer simulation practical. This poor performance occurs
since there is not fine enough quantization to specify branch metrics
such that the incorrect paths are different enough from the correct
path, resulting in the decoder searching too many of the incorrect
paths.
4,3 DECODING RESYNCHRONIZATION

For a finite forward buffer and backup buffer, it ca;n be seen
from the computations distribution and the backsearch distribution
that the forward buffer may fill and overflow and the decoder may
at tempt a backsearch to the limit of the backup buffer. When either
of these two events occur, the decoding process is interrupted and
must be resynchronized. The requirement necessary for resynchron-
ization is a memory length K of information bits without error to
restart the convolutional encoder used by the decoder on the correct
path.

The most familiar resynchronization scheme, and the simplest
conceptually, is block resynchronization. In this case, periodically,
a memory length of predetermined information bits is used to form the

tail of the block which is transmitted. Since any choice of information

92

bits is allowed for the tail, usually a sequence with good cérrelat ion
properties is used (i.e., a pseudonoise sequence or a Barker sequence).
Thus, acquisition of block synchronization (i.e., the location of the
block tail) is performed by searching the received symbols for the
known sequence spaced I'-K branches apart, where [is the block
length. The tracking of block synchronization is performed by either
a delay lock loop or a tau jitter loop, both of which are commonly used
in pulsed pseudonoise modulation systems. However, most NASA
manned missions already have transmitted synchronization sequences
for other subsystems. Therefore, block synchronization and branch
synchronization can be derived from the system synchronization and
the complexity of acquisition and tracking wi.ll nof be considered in this
study.

The complexity of block resynchronization is in the transmitter
where the data must be buffered during insertion of the tail sequence.
Since the tail is a memory length of information bits, a buffer the size
of the convolutional encoder is néeded. However, the symbol rate is
not exactly 1/2 or 1/3 of the input data rate with block resynchronization,
and this may present problems in some systems. In many of the systems
considered, multiplexing is perfofmed, and the symbol rate needed for
block resynchronization ceases to be a problem. The remaining disad-
vantage of block resynchronization is the rate loss due to the tail

sequence that transmits no information.

93

Using the block reéynchronization technique, when the decoding
process is interrupted, the remaining information bits in the block
are output to the data user. The decoder can now be moved to the
beginning of the next block. Since a memory length with predeter-
mined information digits was transmitted, the decoder can load its
encoder with these knowﬁ information digits, and resynchronization
is achieved. The errors from the interruption of the decoding process
occur since the remaining undecoded information bits in the resyn-
chronization block are output with channel errors. Thus, the proba-
bility of error due to interruption of the decoding process is given by
the probability of decoding interruption multiplied by the average

number of errors each time the decoding process is interrupted.

Po = PPy Ty +p FZ) + Pue (4.5)
where
P; = probability of decoding interruption
P,e = probability of an undetected error per bit
P = probability of a channel error
Fl = number of decoded bits in a resynchronjization
block
', = number of undecoded bits in the resynchronization block

including the number of bits in the backup buffer
Since on the average about one-half the bits in the resynchronization
block have been examined before an overflow,

r (1/2)F - b

tl

1
(4.6)

r, (1/2)T + b

94

where

r total ﬁumbe} of bits in the resynchronization block
b = number of bits in the backup buffer
The proBability of undetected error is normally designed to be
negligible in comparison with either the probability of decoding inter-
ruption or the probability of channel error (P I'j <<p FZ). Thus,
equation (4.5) may be rewritten as: |
P, = (1/2T + b)Pyp : (4.7)
The rate for block resynchronization is given by:
R' = R(L}*_K) for '=K (4. 8)
Another resynchronization scheme that is possible is statistical
resynchronization. Using this scheme, there is no rate loss, and the
symbol rate may be exactly 1/2 or 1/3 of the input data rate. Also,
there is no additional complexity in the transmitter to handle the resyn-
chronization. For systems where transmitted synchronization is not
available, extra hardware to perform acquisition and tracking of block
synchronization is not required. Thus, statistical resynchronization
can have a tremendous advantage in complexity over block resynchron-
ization.
With statistical resynchronization, when a forward buffer overflow
occurs, the decoder is moved further into the received data stream,
and hard decisions on a memory length of information bits are used

to load the decoder's replica convolutional encoder to restart decoding.

For hard decision demodulation, a resynchronization strategy is to

95

establish the point of restart as the "origin'' such that the decoder cannot
back up past it. The decoder is declared resynchronized when the backup
buffer is again filled. As in block resynchronization, channel errors
in the information bits are not corrected between buffer overflow and
resynchronization. The. probability of error over this period is just
equal to the chanﬁel probability of error. If the computations required
to resynchronize are too large, then the choice of the hypothesis bits
used to load the decoder's replica encoder is probably incorrect, and
‘the resynchronization attempt should be rejected. A new resynchroni-
zation attempt is begun by moving the decoder farther into the received
data stream a specified number of branches.

For rate 1/2 and hard decisions made on the demodulated symbols,
the probability of choosing a memory length of correct hypothesis bits
to load the replica is:

P, = (1-p)¥ (4.9)

For channel probability of error p = 0. 045 corresponding to Eb/No =
4.6 dB and R = 1/2, P, = 0.229 with memory length K = 32, and repeated
guessing would give a correct memory length of bits in about five trials
on the average. The decoder is allowed to return to the "origin" H
times before it is rejected. Table 4.7 presents the results of simula-
tions to measure the probability of resynchronization, where P..p is
the probability that a resynchronization atterhpt is rejected with the

correct hypothesis bits inthe replica encoder. It should be noted that

96

Table 4.7 Measured Probahility of Resynchronization

Channel
Probability | Memory [Probability of Resynchronization
of Error Length H Prch
) K Predicted Measured
0. 045 32 0.229 0.345 3 {4.16x1073
0.281 2 |1.66x10-2
0.234 1 0.1
0.134 0 0.462
0. 035 32 0.308 0. 454 3 0
0.382 2 |3.02x10-3
0.338 1 }3.92x10"2
0.222 0 0.365

the measured probability of resynchronization is considerably larger
for H > 1 than equation (4.9) predicts. The large measured proba-
bilities of resynchronization result from the ability of the decoder to
restart even when error.s have occurred in the initial hypothesis bits
loaded into the replica encoder. The density of the possible errors in
the initial hypothesis bits loaded into the replica encoder that can occur
in a successful i'esynchr;)nization attempt is illustrated in Figure 4.11.
To produce the curves in Figure 4,11, each successful resynchron-
ization was tested for one or more errors in a group of five hypothesis
bits. For example, if a successful resynchronization had an error in
the third and the seventh hypothesis bits, then the group of the 1-5 hypo-
thesis bits and the group of 6-10 hypothesis bits would each be credited
with containing errors. The fraction of successful resynchronization

attempts having errors in groups of five is illustrated by horizontal

97

UO13eZTUOIYOULASOYY USALIN ® I0] sisoyjodAy] [BTITUT UT s10xaq Jo Ajisua(g 11°% @an31gq

31g sisayjodA} ur 1oxaq

0¢ §¢ 0¢ 1 01 S
} |

/ -+ 40°0

6%0'0 = 10117 [duueyDd jo £3IIqeqorq M

72¢ = Y3duorT ATowWRN

¢/1 = @38y °poD]

U110, _ TSro

0] SUIN3¥Y POMOIIVY JO IaquinN = H
s31g sisayjodiy
9ATJ JO MooOlg ® Ul Joxxm 3utl
-utejuo)) s3duwally UOIRZIUOIYD

-uksoy [MJSSOIONG JO UOTIORIT = g

98

lines in Figure 4.11. The curves connecting the horizontal lines are
drawn to illustrate the shape of the density. As H decreases, only
errors in the beginning of the initial hypothesis bits will allow the
decoder to resynchronize. This decrease in a'llowed positions of
errors'witl'ﬁn the initial hypothesis bits partly accounts for the decrease
in the probability éf fesynchronization as H decreases. The additional
decrease in‘probability of resynchronization as H decreases results
from the increasg inP. p-
Resynchronization is declared when the decoder has again filled

the backup buffer because, at this point, as the deéoder searches newly
received data, decoded bits must be released to the data user. By
simulation, it has been foﬁnd that the computations distribution for
resynchronization is just the distribution to decode b bits if H = 3, How-
ever, the computations distribution for a resynchronization attempt that
will eventually be unsuccessful has an extremely large required number
of computations to advance b bits. Therefore, a strategy is to specify
a certain number of allowed computations. If the decoder exceeds the
specified number of coﬁputations, Cms the resynchronization attempt
is rejected. Resynchronization of the decoder is achieved if:

(1) H, =H

(2) Cg < C
are both trué, where:

H; = the actual returns to the "'origin"

99

the allowed returns to the "origin"

T
"

actual computations to accept 2 resynchronization
attempt.

Q
n

Thus, to derive the probability of restart Pr(Cm), the following develop-
ment can be used:

P.(Cm) = P(xr/H; = H)P(H, = H) (4.10)
where P(H; = H) is the measured probability of resynchronization in
Table 4. 7.

P(r/H; =H) = P(C < C = 1-P(Cy=Cpy) | (4.11)

m)
where P(Cg = C)) = bP(C = Cm) and P(C = C_)) is the computations

distribution given in Section 4.2.2. Thus,

Pr(C,,) = (1 - bP(C = Cy,))P(H; = H) (4.12)
and 1
Y(C,.) = — (4.13)
m P.(Cp)

where Y(Cm) is the average number of attempts before the decoder is
resynchronized.

Equations (4.12) and (4. 13) assume that each resynchronization
attempt is independent of all others. To achieve this in a practical
design, the decoder must be advanced at least K+1 branches for each
resynchronization attempt. However, the decoder must output the in-
formation bits in the backup buffer for the first resynchronization
attempt to be independent. Hence:

s = b+Y(C)K+1+g) forg=0 (4.14)

where s is the number of information bits output to the data user with

100

channel errors uncorrected. Also:

‘Cm=S(J+K+1+g) (4.15)
where S is the speed advanfage of the decoder, which is the number
of branches the decoder can examine for each branch received (i.e.,

S = Rc/Rd where R is the computation rate of the algorithm logic unit

and Rg is the data rate). The value of J in equation (4.15) is given by:
b

— b 4.16
rcm) + 1 (4.16)

Note (x| is the smallest iﬁteger contained in x.
The decoder resynchronization design procedure is to minimize
s with respect to C,,. However, sipce Y(Cm) is a complex function of
Cm, the derivative. is not easily obtained, and the equation for C,, con-
tains functions of C,, on each side of the equation. Hence, the solution
for the minimum value of s is most easily found by an iterative procedure.
An iterative procedure for finding the minimum value of s is as
follows:
1. Letg = 0 and compute Y(C,)) for C =S(K+1).
2. Using the integer value of (Y(C,y, + 1), recémpute Cm
using equation (4 15).
3. Recompute Y(C,) with the value of C_ from step 2.
4, If the inte'ger value of (Y(Cm) + 1) is the same as the
value of step 2, compute s. Otherwise, using the new
integer value (Y(Cm) + 1), go to step 2 and repeat the

procedure.

101

5. Using J computed in step 4 (equation (4.16) as part of
the computation of s), compute C | for g = 1, Ch =
S(J + K + 2). Compute Y(Cm) using this value of C,,.

If the integer value of Y(C,,) + 1 is not the same as
the value in step 4, go to step 2 with g = 1.

6. Compute s for g = 1. If s is larger than the value obtained
in step 4, stop and use the parameters corresponding to
g = 0. Otherwise, minimize a with respect to C,, =
S(K+1+ g) for integer values of g. Compute J using
the new integer value of (Y(Cm) + 1), and the design
value g4 Will be g - J.

The statistical resynchronization strategy for three-bit quantization
on the demodulated symbols is to make hard decisions on the information
bits for loading the decoder's replica convolutional encoder while the
remaining quantization is used as a reliability measure on the bits,

An information bit is said to be questionable if the reliability quantiza-
tion bits are 00 (i.e., the two quantization levels closest to zero). If
there are more than N questionable information bits in the bits to be
loaded in the replica encoder, then the decoder is moved one position
further into the received data stream to test another K information bits
to load the replica encoder. The value of Ny is chosen to minimize
the number of information bits output to the data user with channel

errors uncorrected. When acceptable K information bits are found,

102

the decoder is restarted with this point as the ""origin.' The decoder
is allowed a given number of computations to decode b (backup buffer -
size) information bits. If the decoder exceeds the allowed number of
computations, then one of the most questionable information bits is
complemented and the decoder is again restarted. When all combina-
tions of the questionable bits are tried and the decoder has agaih exceeded
the allowed number of computations, the decoder is moved further into
the received data stream to test another K information bits to load
the replica encoder. The decoder is declared resynchronized if b in-
formation bits are decoded within the allowed number of computations.

The probability of resynchronization if only hard decision informa-
tion is used is given by:

Py = (L-bP(C=cC_)N1-p¥ (4.17)

If only N questionable bits are allowed for a resynchroﬁization attempt
then the probability of resynchronization for a selected K information
bits is given by:

Ny,

P, = (1- pO)K'NE(l-bP(Czcm/z)) (4.18)

rs
The value of pj is the probability of error with high reliability (i.e.,

an error in one of the remaining three highest quantization levels).

The probability of selectinganacceptable set of K information bits is:
N | A
E
g\ K - : '
PNy = 2 (i)pll(l-pl) ! (4.19)
i=0

The value p; is the brobability of an information bit having low

reliability.

103

The decoder is moved b branches further into the data stream
before the first resynchronization attempt. At this point, the set of
K information bits is tested. If this set is not acceptable, then the
decoder is moved one more branch into the data stream. On the average,
L = ‘-1 /Pl\-I] branches are examined before a set of information bits is
loaded into the decoder's replica convolutional encoder. Therefore,
the allowed number of co-mputations, C,,» for the first resynchroni-
zation attempt is:

Cm = S(b+1L) (4.20)
where S is the speed advantage of the decoder. After the first attempt,
the decoder is advanced at least K+l branches before a set of K infor-
mation bits is tested for the next attempt. Thus, the number of com-
putations allowed for the second ana following attempts is:

Cm = S(K+1+g+ L) (4.21)
where the value of g is used to optimize the number of allowed compu-
tations. The number of information bits output, on the average, to the
data user with the channel errors uncorrected is:

I = b+L+(K+1l+g+L)(1-PL)P, (4.22)
The value of P is the probability of resynchronization on the first
attempt.

A comparison of block and statistical resynchronizatioﬁ for com-
plexity and performance is contained in the folléwing sections, where

the parameters of the sequential decoder are defined.

104

4.4 COMPLEXITY OF THE SEQUENTIAL DECODER

The sequential decoder algorithm was presented in Section 4.1.

To obtain the complexity of the algorithm logic, a detailed algorithm
logic flow diagram is presented in Figure 4.12. In this section, the
complexity of each block in the flow diagram will be found to give an
overall complexity of the decoder. The flow diagram in Figure 4.12

is for the TTL logic. However, for the high data rate (9.1 Mbps), a
lar ge forward buffer is needed. Several manufacturers presently have
available large random-access memories on cards with a read/write
cycle time of 400 nanoseconds. Using the MECL III algorithm logic
unit for this 9.1 Mbps data rate, 110 million branches/second is to be
processed. Therefore, the CPU buffer must store 44 branches in high
speed memory. In this case, each time the decoder reachés a new
branch, the CPU buffer address counter is incremented. When the
CPU buffer is empty, the address counter requests another 44 branches
to be read from the forward buffer. Otherwise, the MECL III algorithm
logic has the same flow as the TTL logic,

The data receivéd from the demodulator is stored until all n quan-
tized symbols for a rate 1/n code are received. Thus, nQ bits of
storage are necessary to collect the quantized data to be stored in the
forward buffer. When all n symbols have been received, the data clock
increments the forward buffer input address counter. A branch of data

is read out of the forward buffer when the decoder moves forward and

105

1D

weiderq mold 2130 wWYlIo3|y I2pod9(] [eljusnbog perrelo 71 °y 2andig

O‘m<>>m0m JAONW

ssaaaav

YISN VIVA € LOdNI
dnyovd
ECEEDT: MOLVIVINOD
dn3ovd
- DTHLAN I41a YAAODNI 2 sSHIAAY
ONMILIANW 1S3 g q<zoﬂbqo>zou_. \ dnyovd
a ;J HONVY L
3 1svd -
qATAV.L | -
O LINW [
HONVYY "
*+ VNI INISTId v
T AON MoV JA. oI vivanool—emoTi9EA0)
FNO TAOW
oydz l.._ 1ds ssadaav p:telols o)
_ T L9 INdNI viva
&Hmbm @IV ME0od Movd + "
—S03HDO @ FAOW TAONW fl gaagand
_ » - aiIv maod
~l b
MOLVYVJINOD} BHOLVIVANOD [—
vy v v
—»
F YOLVINNNDOV M ASNVYL 4o1lvINWNOOV | [aav HONVYE
ONILIAW INASTYA | OIMIANW LSVd AAZILNVAD ——— YOLVINAONWI A
leticPNiclolcet! WouJd

106

increments the output address counter. The data to be read into the
forward buffer has the highest priority so that no data is lost. A com-
parator is hard-wired between the two address counters to detect when
the buffer is full or empty. The complexity associated with the inputting
of data is:

INPUT = nQ(B+1) + 3[log,B] (4.23)
for TTL where B is the forward buffer size in branches. For MECL III,
the complexity associated with the input is:

INPUT = nQ(B+44) + 3 '-logZBQI + 7(nQ(44)+6) (4.24)
where the last term represents the CPU buffer and addressing. The
constant 7 is the relative weight of the MECL III cost including parts,
design, and packaging with respect to TTL. This weighting is a subjec-
tive judgment on the part of the author and should not be considered exact.
The relative weighting will change with the chahging cost of parts, new
MSI announcements, and experience using logic families.

The backup address counter receives the move forward and the
move back signals to count up or down. A comparator is used to detect
when the backup address countef eéuals the backup ini)ut address counter.
If the two counters aré ‘equal and a .move back signal is present, then
the backup buffer overflows, Othérwise, if the counters are equal, a
signal is generated by the comparator to read a new branch from the
forward buffer and a.new branch into the backup buffer. As a new branch

is read into the backup buffer, the hypothesis bit in the input address

107

location is read out to become the decoded bit to the data user. The
complexity of the backup portion of the decoder is:

BACKUP = (nQ+1)b + 3[log2b] (4. 25)
where b is the backup buffer size in branches. For the MECL III
decoder, the complexity in equation (4. 25) is multiplied by seven.

To generate the branch metric, a present branch and a past branch
are stored. If the signal for the new bra-nch is generated from the
backup comparator, then the present branch is used to compute the
metric interval; otherwise, the past branch is used. The convolutional
encoder generates the branches along the path. To compute the metric
interval, the convolutional encoder shifts in a zero. If the decoder
moves along the branch, then the bit corresponding to the best metric is
inserted into the convolutional encoder in place of the zero used initially.
The metric interval is computed by ""exclusive-OR' -ing the sign bits of
the appropriate quantized branch with the output of the convolutional
encoder for an input zero. The metric interval is used as the address
to the metric table producing as its output the hypothesis bit for the
best branch, the best branch metric, and the difference metric, requir-
ing a total of 2Ny +1 bits for each entry in the metric table. The best
metric is transferred to the present metric accumulator to be added.

If the decoder backed up and then moves forward along the worse branch,
then the difference metric is added to the present metric accumulator

(the difference metric is actually negative so the effect is to obtain

108

the branch metric for the worse branch). If, as the decoder backs
up, the hypothésis bit does not correspond to the best branch met.ric,
then a signal is sent to the past metric accumulator comparator to
check the accumulator value for the direction of the next move. The
complexity of determining the hypothesis bits and the branch metrics
for the accumulator is:
HYPOTHESIS = n(3Q+14K) + (27241)(2Ny+1) (4. 26)

The first term represents the branch storage, the metric interval |
computation and the convolutional encoder. The convolutional encoder
is implemented as the convolutional impulse response with a K stage
shift register for the past hypothesis bits. While this implementation
is slightly more complex than usual, it has the advantage of only one gate
delay and is used for high speed computation. The second term in equa-
tion (4. 26) is the metric table and storage for the output branch metric.

The metric accumulators must be large enough to allow the decoder
to move through a very rioisy segment of the received data. To obtain
a bound on this quantity, let W, equal the branch metric corresponding
to n symbol metrics with the metric interval 011. This is the most
positive metric. Therefore, if there were no noise on the channel, then
the decoder could back to the end of the backup buffer and return to the
front with, at most, a metric of W,b. Thus, the metric accumulator
need not be larger than (logZme-] plus a sign bit. The past metric

comparator only detects the sign bit of the accumulator. The present

109

metric comparator detects the sign bit and if the accumulator is less
tﬁan A. Hence, the complexity of the present metric comparator is
[1og2Wr.nb.| + 1, As the decoder moves forward and backward, the past
metric is parallei transferred to the present metric and vice versa.
The direction the decoder moves is determined by the values of the
accumulators. If the present metric accumulatof becomes negative,
the past metric a:ccunﬁulator is comparea. If both metric‘s are negative,
then A is added to the past metric and .0 is set to one. If only the pre-
sent metric is negati.ve, then a move back signal is generated. If the
present metric is positive, then a move. forward signal is .genera.ted.
When the present metric is greater than or equal to A and 6 = 0, then
A is subtracted from the present metric. The complexity of metric
accumulators, transfers, and comparators is:
ACCUMULATOR = 5(|-log2me-l +1)+ 4 (4; 27)
The o;rerall complexity of the sequential decoder is given by:
DECODER = nQ(B+1) + 3 ‘—logZB] + (nQ+1)b +3 [Iogzl::l
+ n(3Q+1+K) + (an+1)(2Nb+1)'
+ 5([1og,W_b| +1)+4 (4.28)
using TTL. For MECL III, the complexity is:
DECODER = nQ(B+44) + 3 [10g2B1 + TnQ(44)+6+(nQ+1)b
+3 [logzb.l, + n(3Q+14+K) + (an+1)(2Nb+1)
+ 5([log, Wb + 1) + 4 | (4.29)
These equations do not include the external complexity required for branch

synchronization or resynchronization after a decoding interruption.

110

4. 4 1 Buffer Complexity

The size of the forward buffer and the backup buffer can be deter-
mined from the computations distribution and the backsearch distribu-
tion, respectively. The computations distribution determines the size
o the forward buffer by de‘termining the probability of forward buffer
overflow, P,. It has been found that P, can be approximated by:

P, ~ AC(SB)‘“ | (4.30)
where B is the number of branches that can be stored in the forward
buffer and S ‘is the speed advantage. Equation (4.30) is a good approxi-
mation for « =21, S = 10, and B < 106. For a < 1, the speed advantage
must be larger than the average number of computations, which grows
exponentially as a is decreased below one. The computation of the
algorithm logic is 12.5, 25, and 100 million computations per second
using TTL, MECL II, and MECL III logic families, respectively.

The size of the backup buffer in branches is given by:

b = %mgz(Ab/Ps) (4.31)

~where Pg is the probability of the decoder reaching the end of the backup

buffer due to a backsearch. The parameters A., «, Ay and § are given
in Tables 4.4, 4.5 and 4. 6.

A reasonable design value for both Po and P, is 10"6 if the desired
probability of error per bit is to be 1074, Using these design values,
Table 4.8 presents the size of the metric table, the forward buffer, and
the backup buffer for various data rates and values of Ny. The numbér

of storage bits in the forward buffer is nQB and the number of storage

111

bits in the backup buffer is (nQ+1)b. Also, the parameters for the
minimum implementation complexity is indicated for varioﬁs data
rates. For example, with R = 1/2 and Q = 3, the minimum implemen-
tation complexity corresponds to Ny = 8 for all data rates. However,
for R = 1/3 and Q = 3, the minimum implementation complexity corre-
sponds to Ny = 7 for the 19. ZI'kbps and the 38.4 kbps data rates and to
.Nb = 8 for the remaining data rates.

4.4.2 Decoding Resynchronization Complexity

The block aﬂd resynchronization schemes are evaluated with respect
to performance and complexity in this section. Using equations (4. 7)
and (4.8) in conjunction with size of the forward buffer and backup
buffers given in Table 4.8, the performance of block resynchronization
can be determined. The probability of decoding interruption Py is equal
to the sum of Poiand Py since this sum is much less than one.

By optimizing with respect to block 1eﬁgth I, it is found that, for
R = 1/2, the best value of l" is 1024 branches, which is better than 512
or 2048 branches by 0.1 dB in Ey, /N,. For R = 1/3, T’ = 1024 branches
still gives the best performance, but I' = 512 branches gives as good a
performance while I' = 2048 branches is about 0.1 dB in E;D/N0 worse.
Figure 4.13 presents the performance using I' = 1024 branches for
R =1/2and 1/3, Q = 1 and 3 bit quantization. At output probability
of error equé.l to 10"4, Table 4.9 summarizes the performance.

Statistical resynchronization provides significant performance

improvement over the block resynchronization performance summarized

112

69 °21 895 ‘g 92% ‘9 V82 'Y *eP1°2 0zz°'t | 089°L L
€601 %821 L *9% € ‘g ¥9s ‘¢ 8L 1 080 ‘1 0L '8 8
. §°¢ €
8L°21 0¥9 ‘g 08% ‘9 02¢ ‘¥ 0912 080 ‘1 (AT o1
6% °01 260 ‘L 61¢'s 9¥s ‘¢ gLL'l 0€Z ‘1 008 ‘z1 4!
. £/1
86 "61 29¥ ‘€1 680 ‘01 92L'9 €9¢€ ‘€ 888 021 L
98°¢ 09L ‘2 0L0°2 08¢ ‘1l 069 08 9¢l 8
Sy 1
€9°¢ 9¢¥ ‘¢ L28 'l #8121 %609 02% 891 01
#*0% "¢ *¥0¢ ‘2 *82L ‘1 2611 9LS 9s% 002 21
¥°89 080 ‘9% 09s ‘be 0¥%0 ‘€2 026 ‘11 0262 2¢€2 9
10°% 21L'2 ¥€0 ‘2 96¢°1 8L9 $69 ‘1 096 L
2/1
*PZ ¢ %81 ‘2 *8€9 ‘1 *260 ‘1 *9¥ ¢ 16 ‘1 880 ‘1 8 0°¢ €
8Z7°¢ 8027 ‘2 969 ‘1 ¥01 1 289 15€ ‘1 vhe ‘1l ot
29°¢ 8¥¥ ‘¢ 9€8 ‘1 yee't 219 €€5 ‘T 009 ‘1 (A
ye'e 86 ‘1 881°1 26L 96¢ 9%s 144 S 6% I
($01%) (s11q (s3lq |(s31q) NI (gp) | (s3@) D) u
sdqm 1°6 | sdqx g°9, | sdas 9-2g| sday »*ge| sday 261 | 28e103s)| 28e1038) | uoyez uojez ajey
az1g ~9z1g | -yuenyd oz\nm -nyuengy | apon
ey ejeQ 1ayIng a1qel, | dwI1dN Toquifg
dnyjoeg str3e | youeag paateday

(s31q @28®e1038)

9Z1g 19jng PIeMIO]

uoTjezZIIUBNY JTIID Ydueiqg snsidp Ayxeidwio) asyng Q°'y AT1IVI

uorjejUs WL [dUI] WINUWITUTIA

113

10-3 C] | T I] | i
- IDEAL -
_ ' COHERENT
PSK
1074}
N R=1/2
- Q=1
o =
m
: i R=1/3
0, Q=1
§ R=1/2
- \\ Q:3
m p— -y
B R=1/3
z a3
8 105 .
3 n .
o - o—
F R -
A, _ _
Lo-6 X] [|] 1
1 3 5 7 9
E, /N, (dB)

Figure 4.13 Sequential Decoder Performance Using Block
Resynchronization with Code Rate R and Q Bits
of Quantization

Table 4.9 Performance of Sequential Decoding Using Block

Resynchronization at P, = 10~

Received Required Coding Gain
Code Symbol Ep/Ng over Ideal
Rate Quantization Coherent PSK
R Q (bits) (dB) (dB)
1 4.95 3.45
1/2
3 3.2 5.2
1 4.6 3.8
1/3
3 2.7 5.7

in Table 4.9.

By using the iterative design procedure presented in

114

Section 4.3, it is found thét the minimum value of s is 280 for Eb/NO

= 4,6 dB with K = 32 and b = 182 branches, while the minimum value

of s is 255 for E, /N, = 5.2 dB.

Since the speed advantages obtained,

even using TTL with four-voice channels, are so large, the minimum

value of s does not decrease as the speed advantage is increased.

For comparison of the two resynchronization techniques, Figure

4.14 presents the performance of each technique for the rate 1/2 hard

decision decoder with K = 32, b = 182, B

198, S = 651, and the block

size I' = 1024 branches, which gives the best performance for block

resynchronization.

It is seen that statistical resynchronization has

0.38 dB better performance than block resynchronization at an output

probability of error per bit of 1074,

Thus, the rate 1/2 hard decision

decoder with statistical resynchronization has a coding gain of 3.8 dB

over the uncoded ideal coherent PSK.

115

10-3

» T | ' |
B —
- =
o -
iy -
-
m
m
o
-4
ey z
_ O]
&
_ -
— [-
O
-
- 3 p—
—
i
< o
m
O
&
o,

10751 _
| STATISTICAL i
| RESYNCH. _

10-6 L : | i] |] J
2 4 6 3 10

Ey,/No (dB)

Figure 4.14 Comparison of the Performance of Sequential
Decoding Using Block Resynchronization and
Statistical Resynchronization

116

For rate 1/3 and hard decisions on the demodulated symbols,

the probability of resynchronization, P.., can somewhat pessimistically

~be expressed as P.; (l-p)K where p is the channel probability of error

per symbol. For K = 23 and Eb/No =4, 4.5, and 5 dB, using coherent
PSK modulation, the probability PrtAis equal to 0.093, 0.126, and 0.218,
respectively. Again by using the iterative design procedure, the number
of information bits output to the data user with the channel errors uncor-
rected is, on the average, 374, 305, and 225 for Eb/No =4, 4.5, and
5 dB, respectively. This design assumes a backup buffer of 114 brarllches.
As an example of the performance of statistical resynchronization
with three-bit quantization, consider the 19. 2 kbps data ré,te using TTL
giving a speed advantage of 651. For rate 1/2 with memory length K = 44
and b = 193 at Eb/No = 3,0 dB, the design that minimizes I is NE = 4 and

g = 0, giving I = 306. If only hard decision information is used, the

equivalent I equals 1423, compared with 705 using block resynchroni-

zation. For rate 1/3 with memory length K = 23 and b = 122 at E,/N

= 2.5 dB, the design that minimizes I is NE 3 and g = 0, resulting
inl = 191, The equivalent vé.lue of I, using only hard decision informa-
tion, is 870 compared with 634 using block resynchronizat‘ion.

Table 4.10 summarizes the performance of statistical resynchron-
ization at output probability of error per bit of 10-4. The improvement

by using statistical resynchronization over block resynchronization is

0.4 dB for code rate 1/2 and 0.2 dB for code rate 1/3 with hard

117
decisions demodulation and 0,3 dB with three-bit quantization.

Table 4.10 Performance of Sequential Decoding Using
~ Statistical Resynchronization at P, = 10~

Required Coding Gain
Code Symbol Ey/Ng ~ over Ideal
Rate Quantization Coherent PSK
R Q (bits) ~ (dB) (dB)
1 4,55 3.85
1/2
3 2.8 5.6
1 4.4 4.0
1/3
3 ' 2.4 6.0

To implement statistical resynchronization, an alternate technique
can be used to handle the decoder backing up to the en(i of the backup
buffer. In a majority of the Casés, when the sequential decoder
searches to the end of the backup buffer, the decéder is following
the transmitted path. Therefore, treating the end of the backup
buffer as the origin of the code tree, the path metric is increased
by A and the decoder searches forward. However, if the decoder
is not following the transmitted path when the end of the backup
buffer is reached, then treating the end of the backup buffer as the
origin will result in either an undetectedverror or, more likely,

a forward' buffer overflow. Using this technique, it can be assumed
that the probability of decoding interruption P; is the same as before
(i.e., P =F, + Py) but all decoding interruptions w-ill occur as for-

ward buffer overflows. The sequential decoder using this technique

118

can be designed with an output buffer of B bits. The output buffer pro-
vides the interface between the decoder and the data user so that the
data user may receive data at a constant rate. The output buffer is
full if the forward buffer is empty, and the output buffer is empty if
the forward buffer is full. Therefore_, if the forward buffer is full,
then a decoding interruption occurs and b undecoded information bits
are shifted out of the béckup buffer into the empty output buffer. Note
that the sequential decoder design should be for more branches in the
forward buffer than in the backup buffer if this technique is used.

As the b bits are shifted into the output buffer undecoded, b bran-
ches are shifted into the backup buffer from the forward buffer. For
the hard decision case, the last K bits shifted into the output buffer
are also shifted ;1nto the convolutional eﬁcoder to restart the decoding
process. Resynchronization is declared when the decoder reaches
the front of the backup buffer and a new branch is requested from the
forward buffer. If K+1 branchesv are received before resynchronization
is declared, then K+1 bits are shifted undecoded out of the backup buffer
into the output buffer with the last K bits also beihg shifted into the
convolutional encoder to restart the decoder for another resynchroniza-
tion attempt. As the K+1 bits are shifted out of the backup buffer, K+1
branches are shifted from the forward buffer into the backué buffer.

Thus, the complexity for the hard decision case is one bit to record

119

overfldw, one bit to record resynchronization, and a gate so that, if
resynchronization is in process, an overflow can only reject the
resynchronization attempt. In addition, the B bit output buffer shift
register and a counter of l-logZK+fI bits to indicate that K+1 bits
have been received are needed. Th'us, the total hard decision statis-
tical resynchronization complexity is: |
Resynchronization = B + rlog2K+ﬂ + 3 ’ (4.32)
For the three-bit quantization case, as ﬁe b bits are shifted into
the output buffer, the last K quantized information.bits are shifted
into an examination buffer. In this examination buffer, the reliability
bits are examined for 00. If there are Np or less information bits
with 00 reliability bifs, then the information Bits are loaded into the
convolutional encoder and the decoding is restarted. If there are
more than NE-informa.tion bits with 00 reliability bits, then a quan-
tized information bit is shifted from the backup buffer into the exami-
e tion buffer. Also, an undecoded bit is shifted from the backup
buffer to the output buffer and a branch is shifted from the forward
buffer to the backup buffer. After a résynchi'onization attempt has
begun, if the decoder returns three times to the end of the backup
buffer,-then thé state of an N, bit counter is exclusive-ORed with
the bits of 00 reliability if the counter has not exceeded its allowed
count., The allowed count'of the Ng bit counter is ZN, where N is

the actual number of information bits with 00 reliability. If K+1

120

branches are received before resynchronization is declared, then K+l
bits are shifted undecoded out of the backup buffer into the output buffer
with the last K quantized information bits into the examination buffer.
The complexity for the three-bit quantization is then the complexity

for the hard decision case plus the examination buffer and logic. Thus,
the total three-bit quantization statistical resynchronization complexity

is: :
Resynchronization = B + {.1og2(K+1).‘ + 6 + 3(K+Ng) (4.33)

Block resynchronizatioﬁ also requires the B bit output buffer.

The beginning of the blocks may have to be tracked and initially
required if this is not incorporated into the system synchronization.
In addition, the data in the transmitter must be buffered during insertion
of the tail sequence. Thus, because of the relative simplicity of statis-
tical resynchronization and its performance improvement over block
resynchronization, only statistical resynchronization will be considered
in the complexity of the sequential decoder.
4.5 PERFORMANCE VERSUS COMPLEXITY

The complexity of the sequential decoder with statistical resyn-
chronization has been specified by equations in the previous section.
Using these equations and the forward buffer size, the backup buffer
size and the metric table size given in Table 4.8, the complexity
can be calculated. Table 4.11 presents a summary of the sequential

decoder complexity with statistical resynchronization with the required

121

TABLE 4.11 Overall Complexity of Sequential Decoder for Various
Data Rates at Output Probability of Error per Bit of 10~

Received Sequential
Code Symbol Ey/Ng Data Decoder
Rate Quantization Rate Complexity
R Q (bits) (dB) kbps (complexity bits)
19.2 1,364
38.4 1,961
1 4.55 57.6 2,558
76.8 3,122
3
| 9.1x10 40, 933
1/2
19.2 3,528
38.4 4,077
3 3 8 57.6 4, 706
76.8 5,343
9.1x103 58, 391
19.2 1, 633
38.4 2,448
1 4.4 57.6 3,209
76.8 3,977
9.1x10> 52, 526
1/3
19.2 11,589
38.4 13,981
3 2.4 57.6 16, 058
76.8 18, 038
9.1x103 190, 268

122

Ey/Ng to obtain ' an output probability of error per bit of 10~% in con-
junction with the ideal coherent PSK channel. The complexity for

rate 1/3 and Q =1 is somewhat greater than rate 1/2 and Q = 1 with
only 0.15 dB improvement in the required E;,/N,. There is an 0.4

dB gain of the rate 1/3 over the rate 1/2 with Q = 3, but the complexity

is about four times larger for the rate 1/3.

SECTION 5.0
VITERBI AND SEQUENTIAL DECODER PERFORMANCE
VERSUS COMPLEXITY

In the preceding. sections, the performance for the Viterbi and
sequéntial decoders was presented from simulation results. The com-
plexity of these decoders was presented in terms of complexity bits by
equations so that many other data rates and system parameters may
be determined for future systems. Frorﬁ careful analysis of the various
portions of each decoder, the number of integrated circuit chips can be
determined for some logic family and hence the cost. As an example,
the complexity of 9.1 Mbps data rate decoder with R = 1/2, K = 3, and
Q =3 is 1,378 complexity bits and requires 180 TTL integrated circuit
chips. Alternately, a 9.1 Mbps data rate decoder with R = 1/2, K = 8,
and Q = 3 has a complexity of 33,818 complexity bits and requires about
5500 TTL integrated circuit chips.

Using the complexity measure described in this report, a per-
formance versus complexity comparison can be made for the Vitervbi
and sequential decoders. Figures 5.1 and 5.2 present the comparison
for R = 1/2 and 1/3, respectively. For rate 1/2 and hard decisions
on the demodulated symbols and the same complexity, the sequential
decoder requires 1.3 dB less Eb/No than the Viterbi decoder at the

19. 2 kbps data rate and an output probability of error per bit of 1074,

123

124

5
10 C I l T I | I 1 I | I -
h -t
~ Viterbi Decoding -
e Sequential Decoding |
Q=3 K=8 K=8
104_ —
a (76. 8 kbps .
= 57.6 % 7
M | 38.4 19.2-76.8 kbps
o 19.2 £ i
= 76. 8 kbps
% - Ny
o ; 57.6
D 4
= 3 38.4 -1
o) !
O %19.2 kbps
103 | -
[19.2-76.8 kbps -
— K=3 -
K=3
2.0 3.0 4.0 5.0 6.0 7.0
Eb/N0 (dB)
Figure 5.1 Comparison of Complexity Versus Performance of Viterbi

Decoding and Sequential Decoding With Code Rate 1/2 and
Output Probability of Error Per Bit of 10

125

T 17

10

COMPLEXITY BITS

107 -

—

[19.2-76.8 kbps

Viterbi Decoding

" e =—=~Sequential Decoding

*76. 8 kbps
%X57.6

¥38. K=8
%19.2

Q=3

19.2-76. 8 kbps

N I S IR N SR NN T

[|

]

3.0 4,0 5.0 6.0 7.0

Ep/N, (dB)

Figure 5,2 Comparison of Complexity Versus Performance of Viterbi

- Decoding and Sequential Decoding With Code Rate 1/3 and

Output Probability of Error Per Bit of 10~

126

For the 76.8 kbps data rate and the same complexity, the sequential
decoder requires 1 dB less Eb/No than the Viterbi decoder. Even for
the high 9.1 hdbps data rate, the sequential decoder requires 0.5 dB
less E /N, to achieve an outpﬁt. probabiiity of error per bit of 1074
than the Viterbi decoder.

As the code rate is d‘eCreased and as the quantization on the
demodulated signals is increased, the Viterbi decoder performance
for a given con.aplexity improves in relation to the sequential decoder
since the sequential decoder must store the quantized demodulated
symbols in its buffers while the Viterbi decoder does not. Even so, for
rate 1/2 with three-bit quantization on the demodulated symbols, the
sequential decoder requires 0.8 dB less Eb/No to obtain a 10-4 proba-
bility of error per bit than the Viterbi decoder for the same corﬁplexity
at the 19. 2 kbps data rate. Alternatelf, to achieve the same perform-
ance, the Viterbi decoder requires almost four times the complexity
of the sequential decoder. For the 76.8 kbps data rate, the sequential
decoder requiresy 0.65 dB less Eb/No than the Viterbi decoder of the
same complexity or a Viterbi decoder must have three times the com-
plexity to achieve the same performance as the sequential decoder.
However, for the 9.1 Mbps data rate, the Viterbi deéoder only requires
half the complexity to achieve the same performance as the sequential

decoder.

127

"For rate 1/3 with three-bit qﬁantization on the demodulated sym-
bols,. the sequential decoder still requires 0.5 dB less Eb/No to achieve
a 104 probability of error per bit than the Viterbi decoder at the 19.2
kbps data rate. For rate 1/3 and Q = 1, the sequential decoder for data
rate 19.2 to 76.8 kbps has an improvement in fequired Eb/No- from 1. 05
to 0.75 dB compared to the Viterbi decoder with the same complexity.

Finally, it is found that, for Q = 3, a sequential decoder with
a code ra‘te of 1/2 has an improvement in required Eb/No of 0.45 dB
to 0.3 dB over a Viterbi décoder with a code rate 1/3 and the same
complexity for data rates from 19.2 kbps to 76. 8 kbps.

Decoding delay is of concern for some systems. However, the
decoding delay for the sequential and Viterbi decoders is negligibly
small even for the low 19.2 kbps data rate. In fact, the decoding delay
for the sequential decoder at the 19.2 kbps data rate is only 19.8 milli-

seconds,

SECTION 6.0

AREAS FOR FURTHER STUDY

The present study has -been concerned with the complexity and
performance of channel coding (i.e., Viterbi and sequential decoding
of convolutional codes) considering an ideal coherent PSK channel.
However, to completely evaluate 1;he performance of the channel coding
in a system, the chafacteristics of the interface between the demodu-
lation and the channel coding and of the interface between the channel
coding and the data compression or source coding must be evaluated.
Appendix II describes techniques to derive branch synchronization
needed for Viterbi and sequential decoding and tec’hniqueé to resolve
reference phase arﬁbiguity due to Costas loop suppressed carrier track-
ing for both biphase and quadriphase modulation. One technique for
reference phase ambiguity resolution is the use of transparent codes
as described in Sections 2.0 and 3,2. There is a need to study trans-
parent cédes to obtain '"good'' for the code memory lengths of interest
for Viterbi and sequential decoding. Also,' the branch synchronization
techniques need to be investigated in order to obtain the performance
of these techniques for good convolutional codes as a function of design
parameters. The best method to study these areas is by computer
simulation due to the large variety of codes and code memory lengths

to be investigated.

128

129

Other areas of further study related to the demodulation-channel
coding interface are the best choice of threshold spacing for three-bit
quantization when quadriphase modulation is used, the sensitivity of
AGC inaccuracies on Viterbi and sequential decoders, and the effects
of the noise statistics out of the Costas tracking loop on the decoder.
'I'he last area, concerning the effects of Costas ioop tracking noise
statistics, has had very little study. Initial work was performed by
Cahn, Huth and Moore9 for the sequential decoder that identified some
of the problems. The solution to handle the correlated noise statistics
out of the Costas loop is to properly choose the branch metrics and
convolutional codes that perform well with these statistics. Phase
jitter of the modulator and doppler due to velocity and acceleration of
the communication terminals éhould be examined for their effects on the
Costas loop noise statistics and hence on the decoder. Th»e best method
for studying each of these areas is by computer simulation, since there
are a large number of parameters to be varied.

In considering the interfé,ce between the channel coding and the
source coding, the error burst distribution and the probability of error
become important considerations, depending on the type of the source
coding and the type of the source. For example, using scan-by-scan
polynomial compression of a video signal, it is more desirable to have
the errors occur in bursts rather than randomly. In this case, a burst

of errors causes a loss of the scan but, with end of scan coding, other

130

scans are unaffected. Ideal codes for this type of source coding are
convolutional codes since, when output errors occur, the errors occur
in bursts. |

In general, the more compression obtained by source coding,. the
higher the sensitivity of the source coding to errors and to error burst
distributi.on. For these high compression techniques, the channel coding
characteristics must be carefully considered. In some cases, pseudo-
random interleaving is Anecessary between the channel coding and the
source coding to provide a random distribution of errors. This increase
in complexity must be considered in the overall systebm ‘optimization,
weighting the gains obtained by the channel and source coding. Thus,
the requirements of the various source coding techniques in terms of
data rate, allowed probability of error, and error burst distribution
must be evaluated to determine the performance of the channel coding

and source coding combination.

REFERENCES

Forney, G. D., Jr. '"Coding System Design for Advanced Solar

Missions,!" NASA Ames Research Center Final Report,

Contract NAS 2-3637, Codex Corp., Watertown, Mass.,
December 1967.

Viterbi, A. J. "Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm,'" IEEE

Transactions on Information Theory, Vol. IT-13, April

1967, pp. 260-269.
Viterbi, A. J. "Convolutional Codes and Their Performance in

Communication Systems,'" IEEE Transactions on Communi-

cation Technology, Vol. COM-19, No. 5, Part II, October

1971, pp. 751-772.
Gilhousen, K. S., J. A. Heller, I. M. Jacobs, and A. J. Viterbi.
""Coding Systems Study for High Data Rate Telemetry Links, "

NASA Ames Research Center Final Report, Contract NAS

2-6024, LINKABIT Corp., San Diego, Calif., January 1971.
Fano, R. M. "A Heuristic Discussion of Probabilistic Decoding, "

IEEE Transactions on Information Theory, Vol. IT-9, No. 2,

April 1963, pp. 64-74,

131

132

Savage, J. E. "The Coniputation Problem with Sequential Decoding, "
Ph.D Thesis, Deéartment of Electrical Engineering, MIT,
February, 19.65.

‘Huth, G. K. "Performancg Boupds for Sequential Decoding Using
Minimum Distance Properties, " Ph.D. Dissertation, Depart-
ment of Electrical Engineering, University of Southern Cali-
fornia, September 1971.

Jacobs, I. M., and E. R. Berlekamp. "A Lower Bound to the Dis-
tribution of Computations for Sequential Decoding, " IEEE

Transactions on Information Theory, Vol. IT-13, April 1967,

pp. 167-174.
Cahn, C. R., G. K. Huth, and C. R, Moore. ''Simulations of

Sequential Decoding with Phase-Locked Demodulation, '' IEEE

Transactions on Communication Technology (submitted).

APPENDIX I

TRANSFER FUNCTIONS OF CONVOLUTIONAL CODES

The transfer function of a convolutional code is obtained by
considering the modified state diagram of the code as a signal flow
graph and using the general techniques discussed in numerous text-
books, such as Cheng, * and is summarized in the following.

An input variable is represented by a source node which has

only outgoing branches; an output variable is represented by a sink

node with only incoming branches. A path leading from a source node
to a sink node without passing any node more than once is called an

open path (also called a forward path).

In a general flow graph, there may be more than one open path
between a source node and a sink node.

On the other hand, a feedback loop (or simply a loop) is a closed

path. The loop transmittance of a feedback loop is defined as the product
of the transmittances (or individual transfer functions) of the branches
forming the loop.

The general formula for graph transmittance between a source

node and a sink node in a signal flow graph is:

T = 1/A), T, (1-1)

*D, K. Cheng. Analysis of Linear Systems, Addison-Wesley, 1959.

I-1

I-2

where: A =1 - (sum of all loop transmittances)

+ (sum of all products of loop transmittances of all
possible nontouching feedback loops taken two at
" a time)

- (sum of all products of looptransmittances of all
possible nontouching feedback loops taken three
at a time) o

+ ...
A, = value of A for that part of the graph not touching the
' ith open path ‘
T, = path transmittance of the ith open path.

The summation is taken over all opén paths between the source
node and the sink node under consideration.

This general formula for a transfer function can now bé applied
to find the transfer function of the modified state diagram such as tha'g
shown in Figure 3.10. First, theré are 11 feedback 1oops (loops) in

the modified state diagram. These loops and their loop transmittances

are:
(h) L, = LND? (bdhge) L, = L°N’D?
(cf) L, = L°ND? (bcfdge) Lg = LON3D®
(bce) L, = L3ND2 (bdgice) Ly = LON3D® |
(fdg) L, = L3n2p4 (befdhge) Lyy = L/N*D? (-2
(fdhg) Lg = LAN3D2 (bdhgfce) L;, = L'N*D?

(bdge) Ly = LAN2D*

From these loop transmittanc es, A is found to be:

I-3

11
A= 1- '21 L.+ LI(L2+L3+L4+L6+L8+L9) + L, (Ly+Ls)
1:=
+ L3(Ly+Lg) - (LjLyLg + Ly LaLy) (I-3)

By substituting the values of the loop transmittances into equation
(I-3) and simplifying: |
A= 1-LND*(1+L+L2+ 1382 - 13N2D% 4+ 1L4N2 - L4N2D4)
(I-4)
There are seven (7) open path transmittances. These open
paths with their transmittances T; and A, are:

4 6

(abce) L ND

H
i

Ay = 1-(L+L,+L;) + L L, (I-5)
A = 1- LND2(1+L2ND2+L3N2-1,3N2D %)
(abdge) T, = L°N2D8
A, - 1 - LND? - L°nD? + 1L.3N%D?
(abdhge) T, = LON3D®
A = 1-Lp = 1-L°ND? (1-7)

(abcfdge) T, = L'N3DIO

A, = 1-L; = 1-LND? (I-8)
(abcfdhge) Tg = L8N4D3

Bs =1 | (I-9)
(abdgfce) T, = L'N°D!O

Ay = 1-L; = 1-LND? (1-10)

I1-4

(abdhgfce) T, = LEN*DS

A 1 (I-11)

7

By taking the summation over the open path transmittances

and simplifying:

s = ¥ T.A; = L4000+ LON% - LiN%DY) (I-12)
i=1

Hence, combining equations (I-1), (I-4), and (I-12):

LANDO(1+L.2N%-1.2N2%DY)
1-LND2(1+L+L2+L3N2-13N2D4+L4N2 . L4N2D?)

Dl

T(L,N,D) =

32

N

LANDO(1+L2N%) + LON2D8 1+L+L2(14N%) + 2L
+ 2L4N2 + L5N% + LON% + ... - (1-13)
The infinite series obtained by dividing the numerator by the denominator
epuﬁqerates the paths in the state diagram leaving the all-zeroes state
and eventually returning to the all-zeroes state. From the series, as
can be verified by examining the state diagrain, there are two paths of
weight 6, one of length 4 produced by a single input one, and one of length
6 produced by three input ones. There are no paths of weight 7, but
there are ten paths of weight 8. The transfer function is, then, the

closed form of the infinite series that defines the structure of the con-

volutional code.

APPENDIX II
TECHNIQUES Of BRANCH AND ‘REFvERENCE PHASE
SYNCHRONI ZATION

The interface probléms between coherent PSK demodulation
and the convolutional codé decoder are the reference phase ambiguity
and branch synchronization. These interface problems may be solved
using either transparent codes and differential coding or nontrans-
parent codes.

For biphase modulation, the incorrect reference phase could
be corrected before the decoding by using differential coding after
the encoding and before the decoding. However, since differential
coding producés two efrors for each single channel error, the effect
of placing the differential c‘odin.g befére the decoder is to double the
error rate into the decoder. The decoder normally operates where
twice the symbol error rate into the decoder results in the loss of
several dB in signal energy per bit/single-sided noise density (Eb/No) .
Using a transparent code and differential coding before the encoding and
after the decoding, at most,* a double rate out of the decoder results.
Since error rateis low at the output of the decoder, twice the error rate
results in only a very small degradation; typically, at 10-4 error rate,
less than 0.1 dB for sequential decoding and about 0.3 dB for Viterbi

decoding with code memory length of K = 4,

* Simulations indicate a smaller loss due to clustered errors output from
the Viterbi maximum likelihood decoder and the sequential decoder.

II-1

1I-2

An incorrect reference phase can be corrected using a nontrans-
parent code by detecting that no correct code word exists. Tl;xis situation
is detected by an increase in the growth rate of the best metric in the
Viterbi decoder or an excess number of metric threshold releases in
the seqﬁentia;l decoder. By using a simple up-down counter, the rate
of best metric increase or the metric threshold releases can be mea-
.sured. For the Viterbi decoder, each time a branch is received, the
counter is counted down by one to a minimum of zero; the counter is
counted up by N each time the metric accumulators are normalized.

If the counter counts up to some threshold T, then an incorrect refer-
ence phase is declared and the incoming symbols are complemenﬁed.
The parameters N aﬁd T determine the probability of detection, proba-
.bility of false alarm, and the time to detect . an incorrect reference
phase. For sequential decoding, the counter counts up each time the
metric threshold is released, and each time the metric threshold is
tightened, the counter counts down to a minimum of zero. If the counter
counts up to the maximum of the counter, then an incérrect reference
phase is declared. The probability of detection, the probability of
false alarm, and the time to detect an ;1ncorrect reference phase are
determined from the. size of the counter, the bias. i;n the sequential
decoder metric, and the metric threshold spacing.

A branch for 'code rate 1/n is the n symbols associated with eaéh

information bit to be transmitted. Thus, branch synchronization is

3 | ' II-3

required fo establish which symbol in the received sequence is the
first symbol oﬁ the branch, the second, etc. To determine ‘branch
synchronization with biphase modulation, the symbols in the received
sequence can be arbitrarily assigned to branches. If the symbols do
not belong together on a branch, then the decoder (Viterbi or sequential)
can be used to detect that no correct code word exists with either a
transparent code or a nontransparent code, similar to the resolution
of phase ambiguity with a nontransparent code. Each of the n possible
positions for the beginning of the branch is tested until the décoder in-
dicates that a correct éode word exists and branch synchronization is
achieved. Since the probability of detection and the probability of false
alarm would not be made one and zero, respectively, each of the n
possible positions for the beginning of the branch may ha.ve to be tested
more than once. Thus, the branch synchronization problem using
biphase modulation can be solved in a straightforward manner, as
can the phase ambiguity resolution problem for nontransparent codes.
For qﬁadriphase modulation, there are three importanf cases to
consider. The first case is a single binary source with a rate 1/2
convolutional code using each qua'driphase digit as a branch. The
second case is a single binary source with a rate 1/3 convolutional
code. The final case consists of the use of the quadriphase modulation

for multiplexing two binary sources.

1I-4

Figure II. 1 illustrates the quadriphase demodulation process
and can be used as a guide in pfoposing solutions to thé problems
associated with each of the three cases to be considered. .The quad-
riphase signal is pos(wct+0+¢i) Wheré 0 is a random variable due to
channel noise and §; is the phase of the qu#driphase modulation. 'I“he
angle 0 is estimated by a Costas loop or phase lock loop as 8. The
reference signal cos(wct+6) is phase shifted to form cos(wct+5+ w/4)
and sin(wct+§+ n/4). By mixing the quadriphase signal with these two
signals and then integrating and quantizing, as shown in Figure II. 1,
the first and second symbol sequences can be separated. The vector
diagram in figure II. 1 illustrates the demodulation process as vector
projections. The result of mixing the quadriphase signal with the cos
and sin terms and then integrating‘over the symbol time is the projec-
tion onto the first and second symbol axes. Now, the projected values
can be quantized_ as is done with biphase modulation with an appropriate
scale factor,

In the first case to be considered, the single binary source with
a rate 1/2 convolutional code using each quadriphase digit as a branch,
quadriphase offers no further complication for the combination of branch
synchronization and pha'se ambiguity than was encountered with biphase
modulation_; With quadriphase, there is a fourfold 90 degree phase
ambiguity. However, this can be interpreted as a 180 degree phase

ambiguity (i.e., the received sequence is complemented) and a + 90

II-5

Quadriphase Integrate Iirst
Signal - and ———®1 Quantizer [—®Symbol
Dump Sequence

cos(w t+ 6 + bi)
A
s in(wct+8+7r/4)

Integrate Second
and ——-—’l Quantizer]—b Symbol
Dump Sequence

a
cos(w t+6+ m/4)

01

First Symbol
Axis

11

00

0 Second Symbol
Axis

10

Figure II.1 Quadriphase Demodulation

II-6

degree phase ambiguity., Thus, the 180 degree phase ambiguity can
be solved by using‘a transparent code and differential coding on the
binary source. The + 90 degree phase ambigﬁity can be resolved in
the same way as branch synchronization for biphase.modulation (i.e.,
detect that no correct code word exists and try complementing the
first symbol sequence while interchanging the two symbol sequences).
Therefore, this case is solved by the techniques and design paraineters
found for the biphase modulation case.

In the second case to be considel;ed, the single.binary source
with a rate 1/3 convolutional code, both branch synchronization and
a fourfold 90 degree phase ambiguity must be res.olved. It is poss.ible,
again, to interpret the fourfold 90 degree phase ambiguity as 180 degree
éhase ambiguity and a + 90 degree phase ambiguity, resolving the 180
degree phase ambiguity with a transparent code and differential coding
on the binary source. However, the + 90 degree phase ambiguity and
a threefold branch synchronization ambiguity must still bé resolved,
Thus, if it is detected that no cor‘rect code word exists, then each of
the six (6) possible choices for the branch synchronization and phase
reference (i.e., three branch beginning points for each of the two
possible phases) must be tested. Using a nontransparent code would
require twelvé (12) possible choices for branch synchronization and
phase reference, so the éerformance of transparent codes with differ-

ential coding is a very important consideration.

II-7

In the final case to be considered, two binary sources multi-
plexed by the quadriphase modulation, transparent c_onvoluﬁonal codes
and differential coding can be used to reduce the fourfold 90 degree
phase ambiguity to an ambiguitonf which sequence is the first symbol
sequence. This possibility is due to the two independent sources
(possibly of different data rates) being convolutional encoded separately
before the modulator. Thus, a 190 degree reference phase shift com-
plements both sequences and has no effect, while a + 90 degree refer-
ence phase shift interchanges the symbol sequences and complements
one of the sequences, butA the comple'menting of either sequence has no
effect. In order for the decoder to detect the wrong sequence is being
sent to it, either the data rates of the two sources must be different,
the code rates must be different, or the convolutional codes used to
encode the two sources must be different and carefully chosen. To
resolve the branch synchronization of both decoders of the binary
sources simultaneously would require testing a number of possibilities
equal to the least common multiple of the symbol rates. For many
combinations of sources, the branch synchronization problem of the
two decoders becomes so difficult (a large number.of possibilities to
be tested) that a transmitted synchronization sequence is the least
complex. However, the use of transparent codes ha.s again reduced

the ambiguity to be resolved by a factor of two.

